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PREFACE

This book gives the substance of a course of lectures prepared for
students in Harvard University and in the Massachusetts Institute of
Technology. Its writing was begun at the Institute and finished at
the University. The preliminary work that led the writer into the
igneous-rock field was a study of Mount Ascutney, Vermont, twenty
years ago. The fundamental problems in that small area are largely
identical with those encountered outdoors during each succeeding
field season. An attempt at their partial solution became more hope-
ful as facts were accumulated, both from rocks themselves and from
the literature of geology. The last decade has been specially prolific
in publications affecting the philosophy of eruptive rocks. Many of
these recent memoirs have described definite proofs of vital principles
which had been no more than suggested as possibilities during the
preceding century. The combination of established principles, new
and old, has led to the following general explanation of igneous activity.
It is offered as a working hypothesis, which may have value in helping
to indicate the truly important problems among the infinite number of
those still unsolved. The history of science shows that it is generally
harder to ask a significant question than to answer an insignificant
question; and that in the bettering of working hypotheses the truth is
approached.

At intervals since 1897 the writer has published on special igneous-
rock themes. In a few instances the matter of such papers, after
revision, has been incorporated in this book. In preparing those
original papers as well as the material here published for the first time,
much assistance has been given by colleagues in the Massachusetts
Institute of Technology—Professors W. C. Bray, T. A. Jaggar, G. N.
Lewis, A. A. Noyes, and C. H. Warren; and in Harvard University—
Professors G. P. Baxter, P. W. Bridgman, H. N. Davis, L. S. Marks,
C. Palache, T. W. Richards, and J. E. Wolff. The writer has profited
from many discussions on the general subject with Professors A. C.
Lane, F. D. Adams, and A. C. Lawson, and with Dr. F. E. Wright.
Special acknowledgments are due to Dr. S. J. Schofield and Dr. J. A.
Allan for unpublished information; to Mr. I. Friedlaender and Dr.
A. Harker for permission to reproduce illustrations from their works;
and to several publishers, especially Justus Perthes, Macmillan and
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Company, The Macmillan Company, and U. Hoepli, for similar
courtesies. In the actual preparation of the manuscript the writer is
chiefly indebted to his wife, who performed much of the manual labor
and, with rare tact and judgment, guided him through many a difficult
passage in thought and expression.

CAMBRIDGE, MASSACHUSETTS,
July 25, 1913. -
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INTRODUCTION

Geology has been charged with failure to measure up to the in-
tellectual standard of the so-called “exact” sciences. The reproach
is no longer merited. It originated during a century when the power
of the experimental method in science was first clearly appreciated.
As usually the case with great discoveries, this was soon given exagger-
ated importance by many students of the logic of science. Now that the
intoxication of early, magnificent success in the use of experiment
is succeeded by more sober second thought, it has become clearer
that this method of research is only one of several that are quite
essential and are of coordinate value in scientific thought. The in-
cessant revision of experimental methods, and the inevitable shifts
in the values credited to physical and chemical ‘‘ constants,” show the
inexactness of the principal “exact” sciences. Their mathematics is
precise; their premises are not. It is difficult to name a single ex-
perimental result which is not troubled with some degree of uncer-
tainty. Nevertheless, using the principle of the limits of error, the
principle of the compensation of errors, the principle of correlation,
and the principle of direct inference, physics, chemistry, and astron-
omy have produced majestic and indispensable results. In each
case, the fundamental unit of mass—molecule, atom, or star—can
only be understood through the use of all these principles. At bottom
each “exact” science is, and must be speculative, and its chief tool
of research, too rarely used with both courage and judgment, is the
regulated imagination.

Though not so tinctured with mathematics, geology is in essentially
the same position. It is “exact” in the sense that a countless number
of its observations are quantitative, with limits of error so small as
to permit absolutely rigorous deduction. The larger part of the earth
is inaccessible, like molecule, atom, or star, but the principle of in-
ference has already afforded geological results which are as final, if
not as fundamental, as those won in the other sciences. Many lead-
ing facts in geology have been necessarily secured through methods
other than the experimental. The existence of peneplains has been
proved in spite of the obvious impossibility of reproducing them in the
laboratory or of reducing the subject of erosion to mathematical
formulas. Some geologists refuse to consider seriously theoretical
discussions regarding the earth’s interior, on the ground that theory
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xxii INTRODUCTION -

must await the quantitative data from the laboratory. This mental
position is not justified by the master in physics, chemistry, or astron-
omy, whose imagination or speculative faculty is always working in
advance of his “exact’” determinations.

What geology, like every other science, needs to-day is a frank
recognition that imaginative thought is not dangerous to science but
is the life blood of science. Even the universities do not fully recog-
nize this fact, and are notoriously failing to develop the stimuli which
are necessary for the controlled, scientific imagination. Not only is
geology now characterized by rigorous thought; by its nature as
a science involving long excursions into space—inaccessible places—
and time—epochs long passed—geology is peculiarly fitted to stimulate
the regulated imagination, a process at the core of the highest education.
Science is built on a long succession of mistakes. Their recognition has
meant progress. Progress, indefinitely more rapid, will be possible when
men of science have more generally lost the fear of making mistakes
in using to the uttermost their powers of correlation and deduction.
Science is drowning in facts. It can only be rescued by the growth
of systems of thought. Better than none are ‘little systems” which
“have their day and cease to be.”” We can hope that geology, like
every other science, will find its superman who shall show us the build-
ing hidden behind the scaffolding of myriad isolated facts of nature.
Meantime, it is the duty of every worker in science to strive for a
complete mental system in his field of research and, however mistaken

he may be, he should have the special sympathy of his fellows. The -

best sympathy is expressed in coustructive criticism. The “facts”
of to-day are the hypotheses of yesterday.




IGNEOUS ROCKS AND THEIR
ORIGIN

CHAPTER I
ABSTRACT

A comprehensive knowledge of igneous rocks is important from
many aspects. The sedimentary rocks could not much exceed a
half-mile (0.8 km.) in average thickness if they were spread evenly
over the earth. The stratified terranes themselves have been derived
from igneous terranes. This planet is essentially a body of crystallized
and uncrystallized igneous material. The final philosophy of earth
history will therefore be founded on igneous-rock geology. The earth
has the appearance of being a small, cooled star and its physical con-
stitution and history are problems concerning the nearest of the stellar
host. The formation of continental plateau, mountain range, or ocean
basin is a product of forces developed in the planet below its pellicle
of sediments. The salts of soil, river, and ocean waters, as well as
organic matter and the gases of the atmosphere, are largely, if not
wholly, derivatives of rock materials once in a state of fusion. It is
becoming increasingly clear that most of the world’s ore deposits are
genetically connected with igneous rocks. Economic and dynamical
geology, meteorology, climatology, and oceanography are thus deeply
affected by increase of knowledge regarding the natural history of
igneous rocks. Historical geology itself is enriched by a systematic
review of the earth’s eruptivity. Volcanic effusions and large-scale
intrusions of granitic types of rock matter can often be used to date
events directly registered in sedimentary formations.

This book is intended to summarize and correlate the facts known
about igneous rocks, with special emphasis on their field relations.
Knowledge of petrography and a moderate acquaintance with the
physics and chemistry of rock-melts are assumed, but the treatment
of the subject is essentially geological.

The work is divided into three parts. The first of these (Chapters
II to VII inclusive) broadly considers the facts which need explana-
tion in a philosophy of the igneous rocks. The second part (Chapters
VIII to XIV inclusive) contains a general, eclectic theory on the sub-
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seated solution of down-stoped blocks in batholithic magma, in-
volving the necessity of belief in the secondary origin of much of
the world’s magmatic and igneous-rock matter.

Chapter XI is occupied with a theoretical study of magmatic
assimilation in general. It is of two kinds, marginal and abyssal.
The difficult problem of its quantitative importance is attacked and
the conclusion drawn that no intrusive body is too large to be explained
as the work of the primary basaltic wedge interacting on the two shells
overlying the basaltic substratum. ,

Chapter XII is a general outline of the more important phases of
magmatic differentiation. The mixed magmas due to assimilation
(“syntectics”) and, under certain conditions, the primary basalt
itself are not stable solutions but break up into submagmas. These
*‘non-consulute” fractions are segregated in two chief ways: usually
by the direct action of gravity; and, on a much smaller scale, through
the upward transfer of magmatic gases which have brought together
silicate or oxide materials ‘“entangled” with the rising gases. In
general, the unit of differentiation is a small liquid mass and true
fractional crystallization is regarded as a very subordinate mode of
magmatic splitting. A general statement is given of demonstrated
splitting in volcanic vents, sills, laccoliths, and batholiths. The
most instructive illustration are those derived from sills and laccoliths,
a number of which are tabulated, with concise statement of the
facts.

Chapter XIII treats of the theory of volcanic action at central
vents. Among the topics considered are: the localization and opening
of the vent; the persistence of its eruptivity for long periods; the alter-
nation of active and dormant stages; the rhythmic character of eruption
during an active stage; the origin of the heat in the vent; the rate of
heat-loss during activity; the principle of ‘‘two-phase convection,”
which is held to be the chief cause of the transfer of heat from the depths;
the systematic changes during the life of a central vent, wjth respect
to explosiveness and to the petrographic nature of its lavas; the origin_
of block lava and of ropy lava; the cause of lava outflow; the genetic
classification of volcanic gases; the distinction between magmatic and
phreatic explosions; and that between ‘‘ principal’’ and ‘‘subordinate”’
volcanoes of the central type.

Chapter XIV summarizes the general theory, which is seen to be
eclectic in character since it includes the ideas of many workers in
petrogeny. The only other modern attempt to form a stable theory
of approximately similar scope is that of Loewinson-Lessing, whose
position is briefly discussed.

Chapter XV opens the third and concluding part of the volume.
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The members of the gabbro clan are here listed and some of the more
important are considered in their relation to the eclectic theory.
The composition of the substratum basalt is approximately calcu-
lated, and in succession, the olivine-free basalts, the quartz diabases
and their allies, the norites and related types, the hornblende gabbros,
iron basalt, the anorthosites, and the pillow basalts and spilites are
described in their genetic relations.

Chapter X VI discusses the granite clan. The origin of the granites
is most clearly indicated by the facts known concerning many sills
and laccoliths which have invaded sedimentary rocks. Assimilation
combined with differentiation has there produced granitic types
which are generally of somewhat abnormal composition. The
abnormality is that expected by theory. The genesis of rocks showing
the usual granitic composition has been considered in previous chapters.
They are generally gravitative differentiates in gigantic abyssal wedges
which are walled principally by the primitive acid earth-shell and are
cross-cutting bodies, but otherwise are perfect homologues of large,
more fully exposed laccoliths and sills. Many rocks of granitic com-
position (chemically speaking) are clearly differentiated from dioritic,
granodioritic, syenitic, or monzonitic magmas. Gaseous transfer
(pneumatolytic differentiation) is held responsible for the development
of certain small-scale bodies of aplite, pegmatite, liparite, etc., from
intermediate and even subsilicic magmas.

Chapter XVII, treating of the diorite clan, outlines the facts show-
ing a double mode of origin. Most pyroxene andesites are concluded
to be direct differentiates of the primary basalt. Many diorites
appear to represent syntectic or mixed magmas, such as those normally
expected by the solution of rock from the acid earth-shell with the
primary basalt. Mica andesite and hornblende andesite find their
theoretical place as either syntectics or, more commonly, differentiates
of syntectics.

Chapter XVIII contains an abridged statement of the relation of
the eclectic theory to the granodiorites and their allies (tonalites,
many quartz diorites, many dacites, etc.). They have the same origin
as that of most granites, but differ from the latter rocks chemically
because of the large amounts of argillaceous sediments and associated
mediosilicic rocks which, together with the acid earth-shell, have
been assimilated in granodioritic batholiths.

Chapter XIX indicates the great variety of species included with
the syenites proper and their allies. It is recalled that these types
never form the principal rocks in very large bodies, implying that their
parent magmatic wedges were small. A table, found in Appendix C,
illustrates the rule that members of the syenite clan are very generally
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eruptive into mediosilicic or subsilicic sediments. On account of the
specially great fluxing power of such sediments, their assimilation
near the top of a narrow abyssal wedge must tend to counteract the
acidification due to solution of the acid earth-shell beneath. The
final differentiate of the whole mixture should, therefore, be less
silicious than that normally expected in a greater wedge, which, on
account of its larger supply of heat (lesssudden chilling at contacts, etc.),
dissolves relatively more of the thick acid shell. Syenite is thus in-
terpreted as a desilicated granite. The field and chemical relations of
the syenites are found to correspond to the theory. The influence of
the volatile matter absorbed with or from the sediments is emphasized.
A few sills, showing syenite as a small-scale differentiate of basaltic
magma invading basic sediments, are regarded as excellent corrobora-
tions of the general theory.

In Chapter XX nearly one-third of the recognized igneous-rock
species are considered together, under the name ‘‘alkaline clans.”
These include most of the so-called ‘“alkaline’”” rocks. They are ex-
plained by the same principles as those used for the granodiorite and
syenite clans. As a rule, the alkaline rocks are differentiates from
mixed magmas which are controlled in their composition and in their
splitting by absorbed carbonate sediments. Because of its infinitely
low content of silica, limestone or dolomite must tend to desilicate
markedly the total solution in an abyssal basaltic wedge. Herein is
the preferred explanation of the characteristic crystallization of minerals
like leucite, nephelite, sodalite, etc., in alkaline rocks. Yet more
signally than with the syenites, the highly alkaline rocks show the
expected influence of gaseous transfer in segregating submagmas.
Carbonate control in the formation of most alkaline rocks is strongly
suggested by the table of their field relations, given in Appendix D;
by the mineralogy and chemistry of the rocks; and by the relatively
small volume assignable to every recorded body of this kind. A
multitude of facts substantiate the thesis that the carbonate syntectics
have been formed in magmas which were originally of basaltic com-
position. However, as expected by the theory, some alkaline rocks
are manifestly due to segregation of sedimentary origin by water-gas
and it is probable that the ‘“juvenile’” or primary gases of the sub-
stratum material have similarly functioned in the development of
some alkaline-rock bodies.

Chapter XXI contains a short sketch of the peridotite clan (in-
cluding the pyroxenites and hornblendites) and the magmatic ores.
The eclectic theory explains their very common field relations to mem-
bers of the gabbro clan; the rocks are interpreted as, in part, direct
differentiates of basaltic magma; in other part, they are differen-
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tiates of syntectics. The splitting is often clearly gravitative. In
many cases, however, the segregation has been more or less evidently
due to gaseous transfer from intrusive magmas, especially those af-
fected by the solution of sediments.

The last chapter sketches the result of matching the eclectic theory
with the geology of the North American Cordillera and thus with a
very extensive assemblage of igneous clans. This region offers all the
important problems in petrogenesis.







PART 1

CHAPTER II
CLASSIFICATION OF IGNEOUS ROCKS

The greater part of the earth’s visible rock-matter is crystalline;
only a minute percentage is composed of glass. The nature and
relative proportions of the constituent crystals or minerals determine
the essential nature of each holocrystalline rock. Actual mineralog-
ical composition is a natural basis for a classification of the rocks and
it must always remain the working basis for field classification. Yet
there are two chief difficulties standing in the way of a perfect applica-
tion of this principle. No direct method has ever been devised for the
accurate measurement of the proportions of minerals in fine-grained
rocks, nor is it likely that such a method is at all possible. Secondly,
even if such a measuring device were in hand, the results of its use must
be imperfect, since, with few exceptions, each mineral species in rocks
is itself of variable composition. The principal minerals generally
occur in **mixed crystals.” Each of these is composed of mixtures
of two or more different molecules, and the proportions in each mixture
form an infinite series within the chemical limits set by the pure mole-
cules. Examples are now familiar in the highly important feldspar,
pyroxene, amphibole, and mica families. Quartz is the only principal
constituent of igneous rocks which always shows the same composition.

These facts have long been recognized by petrographers and the basis
for an ultimate classification is now universally found in the chemical
analysis (total analysis) of the rocks.

MobpE AND NoRM CLASSIFICATIONS

The leading petrographers of Europe have not been disheartened
by the general failure to read out the exact nature of an igneous rock,
that is, its chemical composition, from its mineralogical composition.
They have shown abundantly that there is usually a certain degree
of correspondence between the mineralogical composition of a rock
and its total analysis, so that, in most cases, a general idea of the one
can be obtained if the other is known. The world leader, Rosen-
busch, has prepared an elaborate classification founded on mineralog-

9
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ical composition, which has been largely kept under the control of
chemical analysis. This system may be called the “Mode” classi-
fication, since it is based on the actual mode in which the constituent
minerals are aggregated in the rock fabrics.

On the other hand, certain American petrographers have cut the
Gordian knot by ignoring the ‘“mode” in their primary classification.
Instead of the actual minerals, ‘“standard’’ minerals or molecules
are calculated from the total analyses, and the rocks are classified
according to the nature of the “norm’’ or whole group of standard min-
erals calculated foreach rock.! Thissystem may be called the “ Norm”’
classification.

The reader must be referred to other works for discussion as to the
‘relative merits of these two systems.? One or two remarks only will
here be offered to suggest the full reason why the Mode classification
will be used in this book.

In the first place, the Norm system, as announced and practised
by its authors and by a considerable number of followers, is largely
founded not on proved facts, but on assumptions con